
1a - Kicking Off Your Python Adventure
1b - Unveiling the Power of Comments
1c - Discovering the Power of Variables
1d - Manipulate Data

4a - Mastering Basic Functions in Python
4b - Power up your functions with data
4c - Getting Data Back from Functions
4d - Mastering IF statements

3a - Up and Down
3b - Side to side
3c - Front to Back
3d - Drone Spins: Yaw Control
3e - Diagonal and Curved Drone Maneuvers
FUNCTIONS

2a - PythonFlyer Safety
2b - Commanding the PythonFlyer's LEDs and Sounds
2c - Our First Flight
2d - Hover and Trim

INSTALLING AND CONFIGURING PYTHON

INTRODUCTION TO PYTHON AND BASIC CONCEPTS

235
249
264
281

100
118
135
149

170
184
194
204
214

1
0
2
7
4
8
6
6

1
2
3
4
Additional Tools

Certificate of Completion
Glossary

DANCING DRONE

LEARNING TO FLY

TABLE OF CONTENTS

30
3
30
4

2

A Special Thank You to Steve & Lesley Steck, Autumn Wells-Stewart and Kerri Panico for creating
this curriculum and sharing the gift of Python with classrooms everywhere!

INSTALLING AND CONFIGURING PYTHON:

Scroll to the bottom of this page and download the Windows installer (64-bit) version (or if you have an older laptop, you may
need to install the 32bit version).

Step 1:
Download and install Python 3.11.6 (this is the newest version of Python that has been verified to work with the PythonFlyer):

https://www.python.org/downloads/release/python-3116/

Once the installer is run, a window will popup with two checkboxes on the bottom of the window. Make sure both are checked
before clicking "Install Now"

Click the "Close" button on the next screen.

It is recommended that you reboot your computer before proceeding.

Step 2:
Download and install PyCharm:

https://www.jetbrains.com/pycharm/download/

Scroll to the bottom of this page and download the PyCharm Community Edition:

3

Click the “Next” button on all of the installation prompts, until it reaches a window that has “Install”, then click the “Install”
button.

4

Click the “Finish” button and PyCharm should now be installed on your machine:

5

Open PyCharm and navigate to Projects on the left panel:

Step 3:
Setup the Python Flyer Lesson Files:

Extract the PythonFlyer_Lessons.zip file to a folder on your computer.
(in the example below we extracted the files to c:\PythonFlyer):

Press the OK button:

Select File -> Settings:

Click the menu button on the top left of the PyCharm screen:

Select Open and locate the PythonFlyer_Lessons directory that you extracted from the .zip file:

7

Click the OK button on the bottom of this window:

Under Project: PythonFlyer_Lessons, select Python Interpreter. Ensure that the Python Interpreter is set to Python 3.11. If it
is not, select it from the drop down:

8

Introduction: Welcome, future Python coders!
In Chapter 1, we embark on an exciting journey
into the world of programming, where you'll
learn the building blocks of Python and
discover how to apply them to control drones.
Each lesson will unlock new skills, guiding you
from basic coding concepts to controlling your
PythonFlyer. Let's dive into this thrilling
adventure and start coding our way to the
skies!

What we’ll cover:

Lesson 1a: Kicking Off Your Python Adventure.
 Learn the fundamental principles of Python, including basic syntax and how to use the print function.

Lesson 1b: Unveiling the Power of Comments
Discover the importance of comments in coding and how they help organize and clarify your code.

Lesson 1c: Coding Adventures
Discovering the Power of Variables. Explore how variables work in Python and how they act as containers for
storing and manipulating data in your programs.

Lesson 1d: Unlocking Data Magic
Master the use of mathematical operators to perform calculations and manipulate data efficiently in your Python
programs.

Chapter 1
“Python Adventures: Your First Steps into Coding with Drones”

9

Lesson 1a “Kicking Off Your Python

Adventure”
Welcome to Lesson 1a of our coding journey! Today, we’re diving into the exciting world of Python, one of
the most popular and beginner-friendly programming languages out there. Think of Python as the
language that will help you talk to computers, and today we’re going to start learning how to speak it.
We’re going to explore the basic building blocks of Python, starting with its "grammar"—the syntax. Just
like you need to know the rules of a language to write a good story, you need to know Python’s syntax to
write awesome code. We’ll also get hands-on with the print() function, your first tool in telling the
computer what to do—whether it’s showing messages on the screen or displaying the results of
calculations. And the best part? You’ll be doing all of this in PyCharm, a super cool coding environment
that will help you write, test, and debug your Python programs. By the end of this lesson, you’ll be ready
to start coding on your own, with the skills to create simple programs and the knowledge to keep
growing as a Python programmer.

Hello World!

I’m BeeBot!

By the end of Lesson 1a, you will be able to:
Understand Python’s Basic Syntax: Learn the rules of Python’s "grammar" so you can write code that the
computer understands.
Master the print() Function: Use the print() function to make your code "speak" by displaying text and
variables on the screen.
Navigate PyCharm Like a Pro: Get comfortable with PyCharm, the tool you’ll use to write and run your Python
code, so you can focus on bringing your ideas to life.

10

Smartboard or Projector

Printed Python Code Examples

Lesson Files (PythonFlyer - Lesson 1a)

Laptop or PC with Python and PyCharm installed on it Classroom

Classroom

USB drive/file

USB drive/file

Learning Aides

11

Glossary

PyCharm

Execution

Syntax
Highlighting

Basic Syntax

Python Editor

Syntax Errors

print() function

Debugging Tools

Code Completion

Folders and Files

A built-in Python function used to display text or other outputs in the console

A feature in IDEs that suggests possible completions for partially typed code, such as
keywords, function names, or variables.

The process of running a program or script. In Python, execution refers to the Python
interpreter processing the code line by line to perform tasks.

Features in IDEs that help programmers find and fix errors (bugs) in their code. Includes
breakpoints, step-through execution, and variable inspection.

Organizational structures used to store and manage code and related resources. Folders
contain files, and files contain the actual code or data.

A feature in code editors and IDEs that color-codes elements of the code according to their
function, improving readability and helping identify errors.

A software tool specifically designed for writing and editing Python code. Provides features
like syntax highlighting, code completion and debugging tools.

An Integrated Development Environment (IDE) specifically designed for Python development.
Provides tools for writing, testing, debugging, and managing Python code.

The set of rules that defines the structure of a programming language. In Python, syntax rules
govern how code must be written to be correctly interpreted and executed

Errors that occur when Python code doesn’t follow the correct rules, preventing the program
from running. Common causes include missing punctuation, improper indentation, or incorrect
commands.

12

Teacher Preparation for Lesson 1a: Introduction to Python and Basic Concepts.
Review Lesson Materials:

Familiarize Yourself with the Content: Thoroughly review the "PythonFlyer - Lesson 1a" file. Focus on the
foundational concepts of Python, including syntax rules, the print() function, and basic navigation within the
PyCharm IDE. Ensure you understand how these concepts will be introduced and practiced in the lesson.
Practice Writing and Executing Python Code: Write and run several simple Python scripts using the print()
function. Experiment with different messages and syntax variations to anticipate potential student questions or
challenges.
Prepare Visual Aids:

Create or Review Visual Aids: Prepare visual aids that highlight the basic syntax of Python, the structure of a
print() statement, and the layout of the PyCharm IDE. Use diagrams or screenshots to illustrate key concepts like
syntax highlighting.
Plan for Displaying Code Examples: Ensure you have clear, step-by-step code examples that you can display
using the projector or Smartboard. These examples should start simple and gradually increase in complexity as
students grasp the basics.

Set Up Classroom Technology:
Test the Projector or Smartboard: Make sure the projector or Smartboard is functioning properly. Test the
connection to your computer and verify that lesson materials and live coding demonstrations can be displayed
clearly to all students.
Prepare Student Laptops/PCs: Confirm that all students have access to laptops or PCs with Python and PyCharm
installed. Ensure that the "PythonFlyer - Lesson 1a" files are accessible to all students and that they can open
and run Python scripts without issues.

Plan Interactive and Hands-On Activities:
Design Interactive Exercises: Plan exercises where students can practice writing and executing simple Python
scripts using the print() function. Consider activities that allow them to experiment with different messages and
observe how changes in code affect the output.

Prepare Handouts and Resources:
Print Handouts: Ensure that any handouts required for the lesson, such as syntax reference sheets or step-by-
step guides for using PyCharm, are printed and ready for distribution to students.
Display Handout Files on Smartboard: Have the handout file displayed on the Smartboard for easy reference
during the lesson, ensuring all students can follow along.

13

Glossary Review for Lesson 1a:
Display the Glossary of Terms: Show the glossary of terms for Lesson 1A on the board or projector. Review each
term with the class, ensuring they understand the definitions and how to use these terms when controlling the
PythonFlyer. Encourage students to ask questions if they need clarification.

Review of Key Terms:

Basic Syntax: Explanation:
Explanation: Explain that basic syntax refers to the set of rules that determine how code must be structured
for it to be correctly interpreted by Python. Understanding these rules is crucial for writing code that runs
without errors.
Example: Show how Python code is structured with indentation and without semicolons at the end of
statements.

print() Function:
Explanation: Highlight that the print() function is used to display text or other outputs on the screen. It is one of
the most basic and commonly used functions in Python.
Syntax: print("XXXXX")
Replace "XXXXX" with any text you want to display on the screen.
Make sure everything inside the parentheses is surrounded by quotation marks " ". (We’ll learn about
some exceptions to this in a later lesson.)
Example: Demonstrate with print("Hello, World!"), explaining how this command will display the text "Hello,
World!" in the console.

Python Editor:
Explanation: Describe a Python editor as a software tool specifically designed for writing and editing Python
code. It helps in making the coding process smoother and more efficient.
Example: Show how to use an editor like PyCharm or IDE, pointing out features like syntax highlighting and
code completion.

Execution:
Explanation: Explain that execution is the process of running a program or script, where the Python interpreter
processes each line of code to perform the tasks written in the script.
Example: Demonstrate the execution process by running a Python script in PyCharm.

14

PyCharm:
Explanation: Introduce PyCharm as a powerful Integrated Development Environment (IDE) used for Python
development, which includes many tools to help write, test, and debug code.
Example: Show students the PyCharm interface and highlight features like the project explorer, editor window,
and run/debug tools.

Syntax Highlighting:
Explanation: Discuss syntax highlighting as a feature that color-codes different elements of the code to
improve readability and help quickly identify errors.
Example: Show how PyCharm or another Python editor highlights different elements of the code, such as
keywords in one color and strings in another.

Code Completion:
Explanation: Explain that code completion is a feature in IDEs that suggests possible completions for partially
typed code, helping to speed up coding and reduce errors.
Example: Demonstrate how typing print in PyCharm might suggest print() as an auto-completion option.

Debugging Tools:
Explanation: Describe debugging tools as features that help identify and fix errors in the code. These tools
allow you to pause the code, inspect variables, and step through code execution to understand what’s going
wrong.
Example: Show how to set a breakpoint in PyCharm and explain how it allows you to pause the program at a
specific line to check the program's state.

Folders and Files:
Explanation: Explain that folders and files are used to organize and manage code and resources. Folders group
related files together, making it easier to manage large projects.

15

Lesson 1a: Kicking Off Your Python Adventure

Introduction to Python and Basic Concepts

Lesson Objectives Review:

Display the Objectives: Start by reviewing the lesson objectives with your students. This ensures they have a clear
understanding of what they’ll be learning and accomplishing by the end of the lesson.

Detailed Breakdown of Objectives:

Understand Python’s Basic Syntax:
Explanation: Introduce students to the fundamental rules of Python syntax, which is the set of rules that
dictates how Python code is written. Understanding these basics is essential for writing code that the computer
can understand and execute.
Example: Show simple examples of Python syntax, such as using parentheses for functions, proper indentation,
and how to structure basic code statements.

Master the print() Function:
Syntax Overview: Teach students how to use the print() function, which is their first tool for communicating
with the computer. The print() function allows them to display text and results on the screen.
Example: Provide examples of how to use print() to display messages, numbers, and variables, showing how
this function can be used to test and debug code.

Navigate and Use PyCharm:
Explanation: Guide students through the basics of using a Pycharm. Explain how an Integrated Development
Environment (IDE) like PyCharm helps them write, run, and debug their Python code efficiently.
Example: Walk through the PyCharm interface, demonstrating how to create a new project, write Python code,
and execute it within the editor.

Apply Basic Concepts to Write and Execute Simple Python Programs:
Hands-On Exercise: Engage students in writing their first simple Python program using the print() function.
Guide them through saving their script in a properly named file and executing it in PyCharm.
Practice: Encourage students to experiment with modifying their print() statements to display different
messages, helping them understand how changes in code affect the program’s output.

This structured approach will ensure students not only understand the objectives of Lesson 1a but also see practical
examples and engage in hands-on practice, reinforcing the concepts in a way that is both engaging and educational.

16

Flow into the Lesson Content for Lesson 1a
Now that we’ve covered the introduction to Python glossary, let’s dive deeper into how to write and understand basic
Python code. We’ll start by understanding why Python’s syntax is important—it’s like the rules of a language that allow
you to communicate with the computer. Next, we’ll learn about the print() function, your first tool for making Python
"speak." Finally, we’ll bring it all together in a hands-on activity where you’ll write simple Python code in PyCharm to
display messages on the screen. REMEMBER TO STAY FOCUSED AND FOLLOW EACH STEP CAREFULLY!

Lesson 1a: Kicking Off Your Python Adventure: Introduction to Python Programming

Understanding Python Basics
Welcome, everyone! Today, we’re going to start our journey into the world of Python programming. Python is one of
the most popular and beginner-friendly programming languages, and learning it will open up a world of possibilities
for you. In this lesson, we’ll focus on learning the basic building blocks of Python so you can begin writing code.

Why is this important?
Imagine learning a new language like Spanish or French. You need to know how to form sentences and use the right
words. Python is the same—you need to know how to form the correct syntax to "talk" to the computer and tell it what
to do. By learning Python’s basics, you’ll be able to write simple programs and take the first steps toward becoming a
skilled programmer.
Let’s learn to print!

Step-by-Step Python Code Breakdown of the print() Function and Syntax Errors
Step 1: Open PythonFlyer - Lesson 1a

Open PyCharm: Launch PyCharm from your computer.
Navigate to the "Lesson 1" folder:

17

Open the file named "PythonFlyer - Lesson 1a.py":

Now, you’re ready to start coding!

The print() Function: Making Python Speak

The first tool you’ll learn to use in Python is the print() function. It’s like having a conversation with your computer,
where you can tell it to display text or numbers on the screen. The print() function is essential for showing the output
of your code, whether it’s a message or the result of a calculation.

Before we move forward, lets go over how to use the print() function and learn about syntax:
Syntax:
print("XXXXX")

1.Replace "XXXXX" with the text you want to show on the screen.
2.Make sure everything inside the parentheses is surrounded by quotation marks " ". (We’ll learn more about

exceptions in a future lesson.)

Execution:
Let's run the python script that we just opened.

Make sure you have the correct file open:

18

Click the run button:

Observations:
You should have noticed a section appear on the bottom of your PyCharm window similar to below:

Note: Ignore the first 3 lines of the code in this file, we will be going over those lines in a different lesson. We only
care about line 5 in this lesson.

Verify that PyCharm is set to execute on the "Current File":

Notice the sentence "Hello, World!" was printed out to the screen.
Now let's edit the line with the print function and delete one of the parentheses. Your new line should look like this:

You should have noticed a red error symbol on the top right of your screen as well as a red squiggly line just after the
second quotation mark and under the file name at the top of your code window, as shown below:

19

Please click on the red error circle on the top right of the screen. You should see the console window on the bottom
of the screen change to the following (if you do not, click on the red error circle again. If you click on it too many
times the error section will disappear, don’t panic, just click it once more and it will return):

The section underlined in orange indicates what may be missing from your code, in this case we are missing a
parenthesis “)”. The section underlined in yellow indicates the line that this syntax error can be found, in this case it
should be on line 5. You can ignore the second line indicating that there's a typo in the code. This is just PyCharm's
spell checker not recognizing the word and has no impact on the execution of the code.

Let’s put the parenthesis back, so your line should look like this:

20

Interactive Review:
Q&A Session: Ask students to explain each term in their own words. For example, "What is basic syntax, and
why is it important?" or "How does the print() function work in Python?"

Why Understanding Python's Syntax is Important
Python’s syntax is like the grammar of a language. If you don’t follow the rules, the computer won’t understand your
instructions, just like you wouldn’t understand a sentence with bad grammar. Learning how to write code correctly
will help you avoid errors and make sure your programs run smoothly.

Practicing Python Basics
After you understand the basics of Python’s syntax, you’ll start practicing writing code using the print() function. This
will help you understand how Python works and get you comfortable writing and running your own programs.

Why Practice is Important
The more you practice writing Python code, the better you’ll get at it. You’ll begin to see how small changes in your
code affect what happens when you run your program. This practice is essential for building confidence and
becoming more comfortable with coding.

Real-Life Example:
Think of writing Python code like sending a text message to a friend. If you don’t spell the words correctly, your
friend might not understand your message. In Python, if your code isn’t correct, the computer won’t understand it
either, and your program won’t work.

Mastering Basic Python Commands
Now that we’ve covered the basics of the print() function, it’s time to see how everything works together.
Understanding how to use this function on its own is important, but combining it with other concepts in future
lessons will help you create more complex programs.

Staying in Control:
When you’re coding, it’s important to pay attention to every detail in your syntax, whether it’s a missing quotation
mark or an extra space. Following Python’s rules will help you avoid errors and make your code work exactly as you
intend.

21

Safety Tips for Coding:
Just like we need to be careful with a drone, we need to be careful when writing code. Always double-check your
code before running it. It’s easy to make small mistakes like leaving out a quotation mark or misspelling a word, and
these can cause your program to fail.

Putting It All Together
With these new skills in Python programming, you’ll be able to write basic programs that display messages and
interact with the computer. Whether you’re writing simple code or building something more complex, these basics
are the foundation for everything you’ll learn in the future.

Keep Practicing:
The more you practice writing Python code, the better you’ll get at it. These skills will help you as you move on to
more advanced concepts, like using variables, doing calculations, and even creating interactive programs.

Remember: Mastering the basics of Python is key to becoming a skilled coder—start by learning how to use the print()
function and write simple programs, and soon you’ll be coding like a pro!

Wrap-Up Discussion:
What Did You Learn Today?

Discuss the importance of understanding Python’s basic syntax, how to use the print() function effectively,
and how to fix common errors.

Questions to Ask the Class:
Why is it important to follow Python’s syntax rules closely?
What happens if you forget to include a parenthesis in your code?
How does using the print() function help you understand what your code is doing?

22

Challenge Activity:
Objective:

As a final challenge, ask students to find any errors that may exist in the following snippets of code:

Example A:
print(It is a nice day today)

Example B:
print("Hello World"!)

Example C:
print "My Name is BeeBot"

Example D:
print("I hope it rains")

Example E:
print("What is your name?')

Example F:
print("How old are you?"

Example G:
print (I Like Drones")

Answers:
Example A: The print function is missing quotations " ".

It should be: print("It is a nice day today")
Example B: The exclamation mark is outside of the quotations " ".

It should be: print("Hello World!")
Example C: The print function is missing parentheses ().

It should be: print("My Name is BeeBot")
Example D:

There is nothing wrong with this example.
Example E: The second quotation " is a single quote '.

It should be: print("What is your name?")
Example F: The print function is missing the second parentheses).

It should be: print("How old are you?")
Example G: The print function is the first quotation ":

It should be: print("I Like Drones")

23

Explanation: This code will first print "Hello, World!", and then it will immediately print "Let's learn Python!" on the next line.
Each print() function call displays its message in the order the code is written.

Explanation: This command will display "Hello, World!" on the screen when you run your code.

Question 6: After displaying "Hello, World!", you want the program to also display "Let's learn Python!" right after. How would
you write the code for this?
Answer:

Questions and Discussion for Lesson 1a: Kicking Off Your Python Adventure

Question 1: What does the print() function do in Python?
Answer: The print() function tells the computer to display information on the screen. It can be used to show text, numbers, or
results from calculations. It's one of the first tools you’ll use to interact with the computer in Python.

Question 2:How does adding quotation marks affect the print() function?
Answer: Quotation marks are used to tell Python that you are dealing with a string, which is just a series of text characters.
Without them, Python will think you're trying to refer to something else, like a variable or command. For example, print("Hello")
will work, but leaving out the quotation marks, like print(Hello), will cause an error because Python will not know what "Hello" is.

Question 3:Why do we need to use parentheses in the print() function?
Answer: Parentheses are needed in Python to tell the print() function what it should display. Everything inside the parentheses
is what will show up on the screen when you run your program. Without the parentheses, Python doesn't know what you want
it to do.

Question 4:What should you do if your print() statement doesn't work correctly?
Answer: First, check your syntax. Look for missing quotation marks, parentheses, or any typos. PyCharm will often highlight
errors for you, and the error message can help you figure out what went wrong. Always double-check your code to see if
you’ve followed Python’s syntax rules correctly.

Question 5: How would you write a Python command to display the message "Hello, World!" on the screen?
Answer:

24

Suggested Discussions for Lesson 1a: Kicking Off Your Python Adventure

1. Discussion on the Importance of Syntax
Ask students:

"What happens if you forget a quotation mark or a parenthesis when using the print() function?"
Discussion Point: Highlight the importance of following Python’s syntax rules closely. These rules are like
grammar in a language—without them, the computer doesn’t understand your code, and it won’t work.

2. Discussion on Understanding Error Messages
Ask students:

"How do error messages in PyCharm help you fix mistakes in your code?"
Discussion Point: Talk about how error messages are tools to help you learn. They give hints about what went
wrong in your code, like missing a parenthesis or using incorrect syntax.

3. Exploring Creative Uses of the print() Function
Ask students:

"How do you think the print() function can be used in more advanced programs?"
Discussion Point: Encourage students to think creatively. The print() function can be used to show the results of
calculations, to display game scores, or even to give instructions to a user. It’s one of the most versatile
functions in Python and is used in almost every program.

4. Application to Real-World Scenarios
Ask students:

"How might understanding Python's basic syntax help you with more advanced programming tasks?"
Discussion Point: Explain how learning the basics, like using the print() function and understanding syntax, will
help students as they move on to more complex topics, such as loops, functions, and variables. These basics are
the foundation for all programming tasks.

25

Lesson 1a Recap:
Kicking Off Your Python Adventure

Today, we took our first steps into the world of Python programming, focusing on the essential building blocks that
will guide us through our coding journey. Here’s a quick recap:

Understanding Basic Syntax: We explored the foundational rules of Python syntax, learning how to write clear
and correct code that the computer can understand and execute.
Using the print() Function: We practiced using the print() function, our first tool for communicating with the
computer, allowing us to display text and results directly on the screen.
Navigating Python Editors: We learned how to navigate and utilize Python editors, like PyCharm, to write,
execute, and debug our Python code efficiently.
Executing Code in PyCharm: We ran our first Python script in PyCharm, seeing firsthand how our code
translates into actions on the computer.
Identifying Errors: We experimented with introducing small errors, such as missing a parenthesis in the print()
function, and learned how to recognize and fix these errors using PyCharm's debugging tools.

Keep practicing these foundational concepts to build a strong base for your programming skills. Remember,
understanding the basics is key to mastering more advanced topics as we progress. Next, we’ll dive deeper into
coding with new concepts and challenges!

We are on our way to: Lesson 1b - Unveiling the Power of Comments!

